по условиям задачи запишем уравнения:
(a+b)/2 = 6
(a+b)² - 70 = a²+b²
домножим первое на два:
a+b = 12
упростим второе:
a²+2ab+b²-70 = a²+b²
2ab = 70
ab = 35
выразим b из первого уравнения:
b = 12-a
и подставим во второе:
a(12-a) = 35
a²-12a+35 = 0

b1 = 12-7 = 5

b2 = 12-5 = 7
Ответ: числа 7 и 5 (или наоборот 5 и 7).