Решить log2(x^2)+log2(x+3)=2; log(корень 3)(x^2)+log(корень 3)(x-8)=4
log2[x^2(x+3)]=2 x^3+3x^2=4 x^3+3x^2-4=0
по теореме Виета x1+x2+x3=-3 x1x2+x1x3+x2x3=0 x1x2x3=4 x1=-2 x2=-2 x3=1
2log3(x^2)+2log3(x-8)=4 log3[x^2(x-8)]=2 x^3-8x^2=9 x^3-8x^2-9=0