Помогите Найдите множество значений функций. y=3x^2-6x+7

0 голосов
20 просмотров

Помогите
Найдите множество значений функций.
y=3x^2-6x+7


Алгебра (651 баллов) | 20 просмотров
Дан 1 ответ
0 голосов
Правильный ответ
y=3x^2-6x+7

Это парабола. так как к/т перед x² больше нуля то ветви направлены вверх

Область определения (-∞;+∞)

найдем вершину параболы

x= \frac{-b}{2a}= \frac{-(-6)}{2*3}=1

Найдем значение функции в точке х=1

y(1)=3*1-6*1+7=4

так как ветви вверх то пересечений с ОХ не будет. ( можно еще и убедиться найдя D и он будет < 0)

Значит у=4 наименьшее значение, а значит областью значений:

E(y)=(4;+∞)
(2.0k баллов)
0

альтернативное решение. у=3х^2-6x+7=3x^2-6x+3+4=3(x^2-2x+1)+4=3(x-1)^2+4 под знаком квадрата минимальное значение может быть 0 (мы даже не ищем х, заметьте), тогда минимальное у=4. Максимальное - бесконечность. Ответ вам уже дали