Помогите, пожалуйста, решить это неравенство: (log(x+3) по основанию 0.5)/ 6-x >=0 ....

0 голосов
26 просмотров

Помогите, пожалуйста, решить это неравенство: (log(x+3) по основанию 0.5)/ 6-x >=0 . Помогите,прошу! Пожалуйста!


Алгебра (15 баллов) | 26 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

 

image0, \\ \left \{ {{6-x\neq0,} \atop {x+3>0;}} \right. \left \{ {{x\neq6,} \atop {x>-3;}} \right. \\ (6-x)\log_{0,5}(x+3)>0, \\ \left \{ {{6-x>0,} \atop {\log_{0,5}(x+3)>0;}} \right. \left \{ {{-x>-6,} \atop {x+3<0,5^0;}} \right. \left \{ {{x<6,} \atop {x<-2;}} \right. \\ x<-2; \\ \left \{ {{6-x<0,} \atop {\log_{0,5}(x+3)<0;}} \right. \left \{ {{-x<-6,} \atop {x+3>0,5^0;}} \right. \left \{ {{x>6,} \atop {x>-2;}} \right. \\ x>6; \\ x\in(-3;-2)\cup(6;+\infty)" alt="\frac{\log_{0,5}(x+3)}{6-x}>0, \\ \left \{ {{6-x\neq0,} \atop {x+3>0;}} \right. \left \{ {{x\neq6,} \atop {x>-3;}} \right. \\ (6-x)\log_{0,5}(x+3)>0, \\ \left \{ {{6-x>0,} \atop {\log_{0,5}(x+3)>0;}} \right. \left \{ {{-x>-6,} \atop {x+3<0,5^0;}} \right. \left \{ {{x<6,} \atop {x<-2;}} \right. \\ x<-2; \\ \left \{ {{6-x<0,} \atop {\log_{0,5}(x+3)<0;}} \right. \left \{ {{-x<-6,} \atop {x+3>0,5^0;}} \right. \left \{ {{x>6,} \atop {x>-2;}} \right. \\ x>6; \\ x\in(-3;-2)\cup(6;+\infty)" align="absmiddle" class="latex-formula">

(93.5k баллов)