Решите уравнение 2sinx*cosx-=
Cos²(x/2)-sin²(x/2)=cos(2*x/2)=cos(x) Тогда уравнение принимает вид: 2*sin(x)*cos(x)-cos(x)=0 cos(x)*[2*sin(x)-1]=0 cos(x)=0 и 2*sin(x)-1=0 или sin(x)=1/2 При cos(x)=0 x∈π/2 При sin(x)=1/2 x∈π/6