В прямоугольный треугольник вписана окружность. Найдите площадь треугольника, если точка...

0 голосов
98 просмотров

В прямоугольный треугольник вписана окружность. Найдите площадь треугольника, если точка касания окружности делит гипотенузу на отрезки 4 и 6 см.


Геометрия (47 баллов) | 98 просмотров
Дано ответов: 2
0 голосов
Правильный ответ

т.О - центр окружности вписаной в треугольник.

так как окружность касаеться сторон треугольника, то радиус этой окружности находиться под прямым углом к каждой стороне

получилось три пары треугольников: BKO и BLO; CLO и CMO; AMO и AKO - которые равны между собой как прямоугольные треугольники (за катетом - то наш радиус и гипотенузоэ - это общая сторона)

таким образом BK=Bl=6; CL=CM=4; AM=MO=AK=KO=r;

теперь основываясь на теореме пифагора

AB2+AC2=BC2

(r+6)2+(r+4)2=102

решаем квадратное уравнение и находим радиус

r=2 (второе решение уравнения отрицательное, а значит нам не подходит)


image
(127 баллов)
0 голосов

!!!!!!!!!!!!!!Держи,вот

(400 баллов)