Решите пожалуйста задачу. В правильной четырех угольной пирамиде угол между высотой и...

0 голосов
34 просмотров

Решите пожалуйста задачу. В правильной четырех угольной пирамиде угол между высотой и боковыми ребрами равен альфа, сторона основания пирамиды равна А. Вычислите длину бокового ребра пирамиды.


Алгебра (18 баллов) | 34 просмотров
Дан 1 ответ
0 голосов

На рисунке угол между высотой равен углу DSO.

Т.к. пирамида правильная, в основании квадрата.

Найдём диогональ квадрата.

BD=\sqrt{AB^2+AD^2}=\sqrt{a^2+a^2}=\sqrt{2a^2}=a\sqrt{2} 

Найдём OD:

OD=\frac{BD}{2}=\frac{a\sqrt{2}}{2} - по свойству квадрата. 

Рассмотрим треугольник ASD:

sin\alpha=\frac{OD}{SD}\\SD=\frac{OD}{sin\alpha}=\frac{\frac{a\sqrt{2}}{2}}{sin\alpha}=\frac{a\sqrt{2}}{2sin\alpha}

 

Ответ:\frac{a\sqrt{2}}{2sin\alpha} 


image
(8.0k баллов)