Тут даже рисунок строить не надо, всё и так понятно. Фигура ограничена прямой x = -2 и x = 0 - ось OY. Это будут пределы интегрирования. Для начала найдём первообразную функции, чтоб не переписывать в решение. -2 - нижний предел, 0 - верхний
F(x) = F(x^2 + 8x + 16) =
Константу приписывать не стал, не пригодится. Теперь можно переходить к решению.
Площадь фигуры, ограниченной каким-либо графиком функции находится по формуле
Теперь просто подставляем значения. -2 не прописывается, напишу вместо нижнего предела просто a. Надеюсь поймёшь.
S = 
ед^2