Нахождение проивзодной называют дифференцированием. Знак дифференцирования - ` (штрих).
Производную находят по формулам:
, где С - любое число
![x`=1 x`=1](https://tex.z-dn.net/?f=x%60%3D1)
![(kx+m)`=k (kx+m)`=k](https://tex.z-dn.net/?f=%28kx%2Bm%29%60%3Dk)
![(x^n)`=nx^n^-^1 (x^n)`=nx^n^-^1](https://tex.z-dn.net/?f=%28x%5En%29%60%3Dnx%5En%5E-%5E1)
![(\frac{1}{x} )`=-\frac{1}{x^2} (\frac{1}{x} )`=-\frac{1}{x^2}](https://tex.z-dn.net/?f=%28%5Cfrac%7B1%7D%7Bx%7D+%29%60%3D-%5Cfrac%7B1%7D%7Bx%5E2%7D)
![(\sqrt{x})`=\frac{1}{2\sqrt{x}} (\sqrt{x})`=\frac{1}{2\sqrt{x}}](https://tex.z-dn.net/?f=%28%5Csqrt%7Bx%7D%29%60%3D%5Cfrac%7B1%7D%7B2%5Csqrt%7Bx%7D%7D+)
![(sinx)`=cosx (sinx)`=cosx](https://tex.z-dn.net/?f=%28sinx%29%60%3Dcosx)
![(cosx)`=-sinx (cosx)`=-sinx](https://tex.z-dn.net/?f=%28cosx%29%60%3D-sinx)
![(tgx)`=\frac{1}{cos^2x} (tgx)`=\frac{1}{cos^2x}](https://tex.z-dn.net/?f=%28tgx%29%60%3D%5Cfrac%7B1%7D%7Bcos%5E2x%7D+)
![(ctgx)`=-\frac{1}{sin^2x} (ctgx)`=-\frac{1}{sin^2x}](https://tex.z-dn.net/?f=%28ctgx%29%60%3D-%5Cfrac%7B1%7D%7Bsin%5E2x%7D+)
Правила дифференцирования:
![(u+v)`=u`+v` (u+v)`=u`+v`](https://tex.z-dn.net/?f=%28u%2Bv%29%60%3Du%60%2Bv%60)
![(uv)`=u`v+uv` (uv)`=u`v+uv`](https://tex.z-dn.net/?f=%28uv%29%60%3Du%60v%2Buv%60)
![(\frac{u}{v})`=\frac{u`v-uv`}{v^2} (\frac{u}{v})`=\frac{u`v-uv`}{v^2}](https://tex.z-dn.net/?f=%28%5Cfrac%7Bu%7D%7Bv%7D%29%60%3D%5Cfrac%7Bu%60v-uv%60%7D%7Bv%5E2%7D)
![(ku)`=ku` (ku)`=ku`](https://tex.z-dn.net/?f=%28ku%29%60%3Dku%60)
, где u, v - какие-либо функции, k - число
Примеры:
![(10x^5)`=10(x^5)`=10\cdot5x^4=50x^4 (10x^5)`=10(x^5)`=10\cdot5x^4=50x^4](https://tex.z-dn.net/?f=%2810x%5E5%29%60%3D10%28x%5E5%29%60%3D10%5Ccdot5x%5E4%3D50x%5E4)
![(-\frac{cosx}{3})`=-\frac{1}{3} (cosx)`=-\frac{1}{3} \cdot (-sinx)=\frac{1}{3}sinx (-\frac{cosx}{3})`=-\frac{1}{3} (cosx)`=-\frac{1}{3} \cdot (-sinx)=\frac{1}{3}sinx](https://tex.z-dn.net/?f=%28-%5Cfrac%7Bcosx%7D%7B3%7D%29%60%3D-%5Cfrac%7B1%7D%7B3%7D+%28cosx%29%60%3D-%5Cfrac%7B1%7D%7B3%7D+%5Ccdot+%28-sinx%29%3D%5Cfrac%7B1%7D%7B3%7Dsinx)
![(x^2+sinx)`=(x^2)`+(sinx)`=2x+cosx (x^2+sinx)`=(x^2)`+(sinx)`=2x+cosx](https://tex.z-dn.net/?f=%28x%5E2%2Bsinx%29%60%3D%28x%5E2%29%60%2B%28sinx%29%60%3D2x%2Bcosx)
![((2x+5)sinx)=(2x+5)`sinx+(2x+5)(sinx)`=2sinx+(2x+5)cosx ((2x+5)sinx)=(2x+5)`sinx+(2x+5)(sinx)`=2sinx+(2x+5)cosx](https://tex.z-dn.net/?f=%28%282x%2B5%29sinx%29%3D%282x%2B5%29%60sinx%2B%282x%2B5%29%28sinx%29%60%3D2sinx%2B%282x%2B5%29cosx)
![(3x^3+2x^2+x+4)`=(3x^3)`+(2x^2)`+x`+4`=9x^2+4x+1 (3x^3+2x^2+x+4)`=(3x^3)`+(2x^2)`+x`+4`=9x^2+4x+1](https://tex.z-dn.net/?f=%283x%5E3%2B2x%5E2%2Bx%2B4%29%60%3D%283x%5E3%29%60%2B%282x%5E2%29%60%2Bx%60%2B4%60%3D9x%5E2%2B4x%2B1)
![(\frac{x}{5-4x})`=\frac{(x^2)`(5-4x)-x^2(5-4x)`}{(5-4x)`}=\frac{2x(5-4x)-x^2(4)}{(5-4x)`}=\frac{10x-4x^2}{(5-4x)`}= (\frac{x}{5-4x})`=\frac{(x^2)`(5-4x)-x^2(5-4x)`}{(5-4x)`}=\frac{2x(5-4x)-x^2(4)}{(5-4x)`}=\frac{10x-4x^2}{(5-4x)`}=](https://tex.z-dn.net/?f=%28%5Cfrac%7Bx%7D%7B5-4x%7D%29%60%3D%5Cfrac%7B%28x%5E2%29%60%285-4x%29-x%5E2%285-4x%29%60%7D%7B%285-4x%29%60%7D%3D%5Cfrac%7B2x%285-4x%29-x%5E2%284%29%7D%7B%285-4x%29%60%7D%3D%5Cfrac%7B10x-4x%5E2%7D%7B%285-4x%29%60%7D%3D)
![(x^4)``=((x^4)`)`=(4x^3)`=4(x^3)`=4\cdot3x^2=12x^2 (x^4)``=((x^4)`)`=(4x^3)`=4(x^3)`=4\cdot3x^2=12x^2](https://tex.z-dn.net/?f=%28x%5E4%29%60%60%3D%28%28x%5E4%29%60%29%60%3D%284x%5E3%29%60%3D4%28x%5E3%29%60%3D4%5Ccdot3x%5E2%3D12x%5E2)
![(\sqrt{x^2+1})`=\frac{1}{2\sqrt{x^2+1}}\cdot (x^2)`=\frac{2x}{2\sqrt{x^2+1}}=\frac{x}{\sqrt{x^2+1}} (\sqrt{x^2+1})`=\frac{1}{2\sqrt{x^2+1}}\cdot (x^2)`=\frac{2x}{2\sqrt{x^2+1}}=\frac{x}{\sqrt{x^2+1}}](https://tex.z-dn.net/?f=%28%5Csqrt%7Bx%5E2%2B1%7D%29%60%3D%5Cfrac%7B1%7D%7B2%5Csqrt%7Bx%5E2%2B1%7D%7D%5Ccdot+%28x%5E2%29%60%3D%5Cfrac%7B2x%7D%7B2%5Csqrt%7Bx%5E2%2B1%7D%7D%3D%5Cfrac%7Bx%7D%7B%5Csqrt%7Bx%5E2%2B1%7D%7D)
Решить:
1) ![(x^2-7x)` (x^2-7x)`](https://tex.z-dn.net/?f=%28x%5E2-7x%29%60)
2) ![(x^4-x^9)` (x^4-x^9)`](https://tex.z-dn.net/?f=%28x%5E4-x%5E9%29%60)
3) ![(x\cdot sinx)` (x\cdot sinx)`](https://tex.z-dn.net/?f=%28x%5Ccdot+sinx%29%60)
4) ![((x-1)(x^2+x+1))` ((x-1)(x^2+x+1))`](https://tex.z-dn.net/?f=%28%28x-1%29%28x%5E2%2Bx%2B1%29%29%60)
5) ![(x\sqrt{x})` (x\sqrt{x})`](https://tex.z-dn.net/?f=%28x%5Csqrt%7Bx%7D%29%60)
6) ![(\frac{x^3}{2x+4})` (\frac{x^3}{2x+4})`](https://tex.z-dn.net/?f=%28%5Cfrac%7Bx%5E3%7D%7B2x%2B4%7D%29%60)
7) ![(sin3x)` (sin3x)`](https://tex.z-dn.net/?f=%28sin3x%29%60)
8) ![((4x-9)^7)` ((4x-9)^7)`](https://tex.z-dn.net/?f=%28%284x-9%29%5E7%29%60)
Ответы:
1) ![2x-7 2x-7](https://tex.z-dn.net/?f=2x-7)
2) ![4x^3-9x^8 4x^3-9x^8](https://tex.z-dn.net/?f=4x%5E3-9x%5E8)
3) ![sinx+x\cdot cosx sinx+x\cdot cosx](https://tex.z-dn.net/?f=sinx%2Bx%5Ccdot+cosx)
4) ![3x^2 3x^2](https://tex.z-dn.net/?f=3x%5E2)
5) ![\frac{3\sqrt{x} }{2} \frac{3\sqrt{x} }{2}](https://tex.z-dn.net/?f=%5Cfrac%7B3%5Csqrt%7Bx%7D+%7D%7B2%7D+)
6) ![\frac{x^2(x+3)}{(x+2)^2} \frac{x^2(x+3)}{(x+2)^2}](https://tex.z-dn.net/?f=%5Cfrac%7Bx%5E2%28x%2B3%29%7D%7B%28x%2B2%29%5E2%7D)
7) ![3cos3x 3cos3x](https://tex.z-dn.net/?f=3cos3x)
8) ![28(4x-9)^6 28(4x-9)^6](https://tex.z-dn.net/?f=28%284x-9%29%5E6)