Помогите решить интеграл,срочно!

0 голосов
14 просмотров

Помогите решить интеграл,срочно!


image

Математика (15 баллов) | 14 просмотров
Дано ответов: 2
0 голосов
Правильный ответ
\int\ { \frac{2 x^3-3x+7 }{x} } \, dx = \int\ { (2 x^{2} -3+ \frac{7}{x} ) } \, dx = \frac{2}{3} x^{3} -3x+7ln|x|+C, x≠0

\int\ {(1-2x+3 x^{2} )} \, dx =x- x^{2} + x^{3} +C= x^{3}- x^{2} +x+C
\int\limits^3_{-1} {(1-2x+3 x^{2} )} \, dx =( 3^{3} - 3^{2} +3)-((-1)^{3}-(-1)^2+(-1))=
=27-9+3+1+1+1=24

(3.1k баллов)
0 голосов

1
S(2x²-3+7/x)dx=2x³/3-3x+7lnx+C
2
x-x²+x³|3-(-1)=3-9+27+1+1+1=24

(750k баллов)
0

это ты через интернет калькулТор решил(а)?

0

можно сфотать,а то не понятно че там напечатала

0

Нет,я решаю сама!