1) Сделаем замену . После ней уравнение примет вид
Функция, стоящая в левой части, монотонно возрастает как сумма двух монотонно возрастающих функций, поэтому она принимает каждое своё значение только один раз, и у уравнения (относительно t) может быть не более одного корня. Подбором находим t = 4.
Ответ.
2) Домножим всё на x, перенесём в одну часть:
Рассматриваем производную функции, стоящей в левой части:
Производная отрицательна при , положительна при \sqrt[3]{5/4}" alt="x>\sqrt[3]{5/4}" align="absmiddle" class="latex-formula">, поэтому функция на этих промежутках монотонно убывает и возрастает соответственно, и на каждом из этих промежутков может быть не более одного корня уравнения. Подбором находим x = -1, x = 2; других корней быть не может.
Ответ. x = -1, x = 2
3) Для того, чтобы корень существовал, требуется, чтобы подкоренное выражение было неотрицательно, а при таких x знаменатель строго положителен. При функция, стоящая в левой части, монотонно убывает, значит, у уравнения есть не более одного корень. Корень опять можно угадать, это x = 1.
Ответ. x = 1.