Если имеются в виду двоичные числа, то всего будет 2^3 = 8 возможных комбинаций. Общая формула = a^n, где а - основание системы счисления, а n - соответственно количество цифр. Эту же формулу можно применить и для произвольной системы счисления, вместо a подставляя кол-во возможных значений каждой цифры. Естественно, что в таком случае кол-во вариантов должны быть одинаково для каждой цифры. Таким образом, снова получается 8 вариантов.
Если же подойти к вопросу более формально, считая что имеются в виду всем нам привычные десятичные числа, то в старших разрядах нулей быть не может. Т.о. получаем следующие варианты:
100, 101, 110, 111 - т.е. всего 4. Нетрудно заметить, что первая цифра всегда равна 1, т.о. кол-во вариантов от нее не зависит, оставшиеся две же вольны принимать любые значения. Получаем 2^2 = 4 - 4 варианта. Использована все та же формула, что и выше, меняются только параметры.