1) найдем точки пересечения:
12-x^2=x^2-12
24=2x^2
x^2=12
x=±√12 - границы интеграла
найдем площадь положительной:
![\int\limits^{-\sqrt{12}}_{\sqrt{12}} {(-x^{2}+12})} \, dx=\int{(-x^{2}+12})} \, dx |^{-\sqrt{12}}_{\sqrt{12}}= \int\limits^{-\sqrt{12}}_{\sqrt{12}} {(-x^{2}+12})} \, dx=\int{(-x^{2}+12})} \, dx |^{-\sqrt{12}}_{\sqrt{12}}=](https://tex.z-dn.net/?f=%5Cint%5Climits%5E%7B-%5Csqrt%7B12%7D%7D_%7B%5Csqrt%7B12%7D%7D+%7B%28-x%5E%7B2%7D%2B12%7D%29%7D+%5C%2C+dx%3D%5Cint%7B%28-x%5E%7B2%7D%2B12%7D%29%7D+%5C%2C+dx+%7C%5E%7B-%5Csqrt%7B12%7D%7D_%7B%5Csqrt%7B12%7D%7D%3D)
![=(\int-x^{2} \, dx +\int12 \, dx) |^{-\sqrt{12}}_{\sqrt{12}}=(-\frac{x^{3}}{3}+12x)|^{-\sqrt{12}}_{\sqrt{12}}= =(\int-x^{2} \, dx +\int12 \, dx) |^{-\sqrt{12}}_{\sqrt{12}}=(-\frac{x^{3}}{3}+12x)|^{-\sqrt{12}}_{\sqrt{12}}=](https://tex.z-dn.net/?f=%3D%28%5Cint-x%5E%7B2%7D+%5C%2C+dx+%2B%5Cint12+%5C%2C+dx%29+%7C%5E%7B-%5Csqrt%7B12%7D%7D_%7B%5Csqrt%7B12%7D%7D%3D%28-%5Cfrac%7Bx%5E%7B3%7D%7D%7B3%7D%2B12x%29%7C%5E%7B-%5Csqrt%7B12%7D%7D_%7B%5Csqrt%7B12%7D%7D%3D)
![=(-\frac{(\sqrt{12})^{3}}{3}+12*\sqrt{12})-(-\frac{-(\sqrt{12})^{3}}{3}+12*(-\sqrt{12}))= =(-\frac{(\sqrt{12})^{3}}{3}+12*\sqrt{12})-(-\frac{-(\sqrt{12})^{3}}{3}+12*(-\sqrt{12}))=](https://tex.z-dn.net/?f=%3D%28-%5Cfrac%7B%28%5Csqrt%7B12%7D%29%5E%7B3%7D%7D%7B3%7D%2B12%2A%5Csqrt%7B12%7D%29-%28-%5Cfrac%7B-%28%5Csqrt%7B12%7D%29%5E%7B3%7D%7D%7B3%7D%2B12%2A%28-%5Csqrt%7B12%7D%29%29%3D)
![=(-\frac{12\sqrt{12}}{3}+12\sqrt{12})-(-\frac{-12\sqrt{12}}{3}-12\sqrt{12})= =(-\frac{12\sqrt{12}}{3}+12\sqrt{12})-(-\frac{-12\sqrt{12}}{3}-12\sqrt{12})=](https://tex.z-dn.net/?f=%3D%28-%5Cfrac%7B12%5Csqrt%7B12%7D%7D%7B3%7D%2B12%5Csqrt%7B12%7D%29-%28-%5Cfrac%7B-12%5Csqrt%7B12%7D%7D%7B3%7D-12%5Csqrt%7B12%7D%29%3D)
![=8\sqrt{12}-(-8\sqrt{12})=16\sqrt{12} =8\sqrt{12}-(-8\sqrt{12})=16\sqrt{12}](https://tex.z-dn.net/?f=%3D8%5Csqrt%7B12%7D-%28-8%5Csqrt%7B12%7D%29%3D16%5Csqrt%7B12%7D)
т.к. отрицательная часть фигуры идентична (функции противаположны), то общая площадь равна ![2*16\sqrt{12}=32\sqrt{12} 2*16\sqrt{12}=32\sqrt{12}](https://tex.z-dn.net/?f=2%2A16%5Csqrt%7B12%7D%3D32%5Csqrt%7B12%7D)
ответ: 32√12
2) функция у=√х имеет левую границу равную 0 по х, правая равна 12(функция х=12)
![\int\limits^{12}_0 {\sqrt{x}} \, dx=\int{x^{\frac{1}{2}}} \, dx |^{12}_{0}}=\frac{x^\frac{3}{2}}{\frac{3}{2}} |^{12}_{0}}=\frac{12^\frac{3}{2}}{\frac{3}{2}}=\frac{12*2*\sqrt{12}}{3}=8\sqrt{12} \int\limits^{12}_0 {\sqrt{x}} \, dx=\int{x^{\frac{1}{2}}} \, dx |^{12}_{0}}=\frac{x^\frac{3}{2}}{\frac{3}{2}} |^{12}_{0}}=\frac{12^\frac{3}{2}}{\frac{3}{2}}=\frac{12*2*\sqrt{12}}{3}=8\sqrt{12}](https://tex.z-dn.net/?f=%5Cint%5Climits%5E%7B12%7D_0+%7B%5Csqrt%7Bx%7D%7D+%5C%2C+dx%3D%5Cint%7Bx%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D%7D+%5C%2C+dx+%7C%5E%7B12%7D_%7B0%7D%7D%3D%5Cfrac%7Bx%5E%5Cfrac%7B3%7D%7B2%7D%7D%7B%5Cfrac%7B3%7D%7B2%7D%7D+%7C%5E%7B12%7D_%7B0%7D%7D%3D%5Cfrac%7B12%5E%5Cfrac%7B3%7D%7B2%7D%7D%7B%5Cfrac%7B3%7D%7B2%7D%7D%3D%5Cfrac%7B12%2A2%2A%5Csqrt%7B12%7D%7D%7B3%7D%3D8%5Csqrt%7B12%7D)
ответ: 8√12