Помогите пожалуйста решить уравнение sin 6x sin 8x = cos 4x cos 2x

0 голосов
36 просмотров

Помогите пожалуйста решить уравнение sin 6x sin 8x = cos 4x cos 2x


Алгебра (28 баллов) | 36 просмотров
Дан 1 ответ
0 голосов

Sin(6x)*sin(8x)=1/2 (cos(8x-6x)-cos(8x+6x))=1/2 (cos2x - cos14x)
cos4x*cos2x=1/2 (cos (6x) + cos (2x))

Тогда: 

1/2 (cos2x - cos14x)  = 1/2 (cos6x + cos2x)
cos2x - cos14x  = cos6x + cos2x
- cos14x  = cos6x
cos14x + cos6x = 0
2сos( (14x+6x)/2)*cos((14x-6x)/2)=0
2cos10x*cos4x=0
Тогда решение состоит из решений двух уравнений:
cos10x=0
cos4x=0

10x=Pi/2

x1=Pi/20

4x=Pi/2

x2=Pi/8

(6.3k баллов)