Не выписывая всего разложения выражения (x+1/x^2)^10 по формуле бинома Ньютона найдите:1)...

0 голосов
78 просмотров

Не выписывая всего разложения выражения (x+1/x^2)^10 по формуле бинома Ньютона найдите:
1) пятый член разложения
2) число членов разложения, являющихся одночленами


Математика (221 баллов) | 78 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

K-й член разложения бинома (x+y)^{k} имеет вид

C^{k-1}_nx^{k-1}y^{n-k+1}

a)C^{4}_{10}x^{4}\cdot ( \frac{1}{x^2}) ^{6}=210\cdot \frac{1}{x^8}

б) 11 слагаемых  в разложении:

(x+ \frac{1}{x^2})^{10}=x^{10} + 10x^9\cdot ( 
\frac{1}{x^2})+45x^8\cdot ( \frac{1}{x^2})^2+... \\ \\ +45x^2\cdot ( 
\frac{1}{x^2})^8+10x\cdot ( \frac{1}{x^2})^9+( \frac{1}{x^2})^{10}

Сравните
(х+у)²=х²+2ху+у²  -  три слагаемых
(х+у)³=х³+3х²у+3ху²+у³ - четыре слагаемых

(414k баллов)
0

Честно говоря ничего непонятно, напишите как бы вы написали это в тетради

0

А вы знаете формулу бинома Ньютона?

0

нет....

0

Тогда сначала прочитайте теорию. Тогда станет понятно. Это возведение в квадрат, в куб, в четвертую степень двух слагаемых х и у

0

В Вашем задании возведение в 10 степень.

0

спасибо