Рассмотрим 2016 последовательностей из n подряд идущих чисел на окружности:
1) a1+a2+..+a_n
2) a2+a3+...+a_(n+1)
...
n) a2016+a1+...+a_(n-1)
Просуммируем их: каждое из чисел содержится ровно в n пунктах, поэтому (a1+a2+..+a_n)+(a2+a3+...+a_(n+1))+...+(a2016+a1+...+a_(n-1)) = n*(a1+a2+...+a2016) >=0. Видим, что сумма этих слагаемых неотрицательна, так как по условию сумма чисел на окружности неотрицательна. Это значит, что хотя бы одно из слагаемых неотрицательно, иначе сумма была бы отрицательной, что привело бы к противоречию.