2sin^x-5sinx*cosx-cos^x= -2
2sin^x-5sinx*cosx-cos^x+2=0
(по основному тригонаметрическому тождеству sin^x+cos^x=1)
4sin^x-5sinx*cosx+cos^x=0
(поделим уравнение на cos^x тк cos^x=0 не является решение уравнения преобразованиетождественно)
4Tg^x-5Tg*x+1=0(tg= tangence)
Сделаем замену, пусть Tg*x=t тогда :
4t^-5t+1=0
t=1
t=1/4
вернемся к замене:
tg*x=1
tg*x=1/4
откуда следует что:
x= arctg(1/4)+pi*n(n пренаждлежит целым а pi-чисто пи 3.14)
x=pi/4+pi*n(n пренаждлежит целым а pi-чисто пи 3.14)
Решение готово!