Найти биссектрису большего угла треугольника, если стороны треугольника равны 3см, 4см и...

0 голосов
204 просмотров

Найти биссектрису большего угла треугольника, если стороны треугольника равны 3см, 4см и 5см.


Геометрия (76 баллов) | 204 просмотров
Дан 1 ответ
0 голосов
Правильный ответ
Найти биссектрису большего угла треугольника, если стороны треугольника равны 3см, 4см и 5см.
Решение:
Треугольник со сторонами 3,4,5 - прямоугольный (египетский).
Больший угол прямоугольного треугольника равен 90°.
Биссектриса делит сторону, к которой проведена, в отношении прилежащих сторон.
Следовательно, она делит гипотенузу в отношении 4:3, т.е. на 7 частей. 
Пусть биссектриса равна х и разделила треугольник на два со сторонами в каждом:
4; 4*5/7 и х
 3; 3*5/7 и х.
Для нахождения биссектрисы применим теорему косинусов.
Но манипуляции с косинусом 45°=(√2):2  нельзя назвать удобными.
Возьмем косинус одного из острых углов  3/5 
Тогда стороны меньшего треугольника 
3; 15/7 и х( биссектриса)
По теореме косинусов
х²=9+225/49-6*(15/7)*3/5 
х²=288/49=144*2/49
х=(12/7 )*√2
Есть формулы, облегчающие нахождения биссектрисы, (если их знать и помнить).
Для биссектрисы из прямого угла  это 
L=√2(ab/(a+b)) где L- биссектриса, a и b - катеты.
По этой формуле
L=√2*3*4:(3+4)=√2*12/7
При желании можно вычислить, что это составит примерно 2,424366... ( спасибо калькулятору)
(228k баллов)