Как решить это неравенство?

0 голосов
29 просмотров

Как решить это неравенство?


image

Математика (30 баллов) | 29 просмотров
0

Ну здесь прям напрашивается прологарифмировать неравенство по основанию 1/3. Обе части положительны, поэтому вполне имеем право на это.

Дан 1 ответ
0 голосов
Правильный ответ

Логарифмируем по основанию 1/3.
Логарифмическая функция с основанием 1/3 - убывающая, большему значению функции соответстветует меньшее значение аргумента, поэтому меняем знак ≤ на ≥.
log_{ \frac{1}{3}}x^{log_ \frac{1}{3}x} \geq log_{ \frac{1}{3}}\frac{1}{3}

Применяем свойство логарифма степени
logₐxⁿ=nlogₐ|x|
с учетом ОДЗ: х >0, x≠1.

log_{ \frac{1}{3} }x\cdot log_{ \frac{1}{3} }x \geq 1 \\ \\ 
log^2_{ \frac{1}{3} } x\geq 1 \\ \\ log_{ \frac{1}{3} } x \leq - 1
или log_{ \frac{1}{3} } x \geq 1

x≥3    или    0
О т в е т. (0;1/3] U[3;+∞)

(414k баллов)