Пусть угол А=2а, то есть биссектриса делит его на два угла, равным а, аналогично с углом В (2в) и углом С (2с).
Рассматриваем треугольник АВО и треугольник ОВС:
По т. о сумме углов треугольника в треугольнике АВО:
110+а+в=180,
в треугольнике ОВС:
с+в+110=180.
Приравниваем, получаем:
110+а+в=110+с+в
а=с
Значит, 2а=2с, а значит, угол С равен углу А, следовательно треугольник АВС - равнобедренный с основание АС.