Медианы AA1 , BB1 и СС1 треугольника АВС пересекаются в точке М. Точки А2, В2 и С2 -...

0 голосов
108 просмотров

Медианы AA1 , BB1 и СС1 треугольника АВС пересекаются в точке М. Точки А2, В2 и С2 - середины отрезков МА, МВ и МС соответственно.
а) Докажите ,что площадь шестиугольника (А1 В2 С1 А2 В1 С2) вдвое меньше площади треугольника АВС.
б) Найдите сумму квадратов всех сторон этого шестиугольника, если известно, что АВ=5, ВС=8 и АС=10


Математика (196 баллов) | 108 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

`1)
Если в треугольниках основания равны, а высота общая, то площади таких треугольников равны.
См. рисунок в приложении.
Δ B₁MC₂   и  Δ B₁C₂C  имею равные основания МС₂=С₂С и общую высоту, проведенную из точки В₁ на МС.
S (Δ B₁MC₂)=S( Δ B₁C₂C)
Аналогично
S (Δ А₁MC₂)=S( Δ А₁C₂C)
S (Δ А₁MВ₂)=S( Δ А₁В₂В)
S (Δ С₁MВ₂)=S( Δ С₁В₂В)
S (Δ С₁MА₂)=S( Δ С₁А₂А)
S (Δ B₁MА₂)=S( Δ B₁А₂А)

Складываем
S (шестиугольника А₁В₂С₁А₂В₁С₂)=
=S (Δ B₁MC₂) +S (Δ А₁MC₂)+S (Δ А₁MВ₂)+S (Δ С₁MВ₂)+
S (Δ С₁MА₂)+S (Δ B₁MА₂)=S(ΔАВС)-S(шестиугольника А₁В₂С₁А₂В₁С₂)⇒
2S(шестиугольника А₁В₂С₁А₂В₁С₂)=S(Δ ABC)⇒
S(шестиугольника А₁В₂С₁А₂В₁С₂)=S(Δ ABC)/2.

2)
По свойству средней линии треугольника
А₂В₁=А₁В₂=СС₁/3
А₂С₁=С₂А₁=ВВ₁/3
В₂С₁=С₂В₁=АА₁/3

По формуле нахождения медианы треугольника через стороны ( легко получается из формулы: сумма квадратов диагоналей параллелограмма равна сумме квадратов его сторон)
4m^2_a= 2b^2+2c^2-a^2\\ \\4m^2_b= 2a^2+2c^2-b^2\\ \\4m^2_c= 2a^2+2b^2-c^2

(А₂В₁)²+(А₁В₂)²+(А₂С₁)²+(С₂А₁)²+(В₂С₁)²+(С₂В₁)²=
=(СС₁/3)²+(СС₁/3)²+(ВВ₁/3)²+(ВВ₁/3)²+(АА₁/3)²+(АА₁/3)²=
=(2/9)·((СС₁)²+(ВВ₁)²+(АА₁)²)=
=(2/9)·(2а²+2b²-c² +2а²+2с²-b²+2b²+2c²-a²)/4=(2/9)·(3/4)·(a²+b²+c²)=
=(1/6)·(5²+8²+10²)=189/6=31,5


image
(413k баллов)