Решить неравенство log x^2 (1/x + 2/x^2)<0

0 голосов
32 просмотров

Решить неравенство log x^2 (1/x + 2/x^2)<0<hr>image


Алгебра (194 баллов) | 32 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Решите задачу:

\log_{x^2} (\frac{1}{x}+\frac{2}{x^2})\ \textless \ 0, \\ \left[\begin{array}{cc} \left\{\begin{array}{ccc}\frac{1}{x}+\frac{2}{x^2}\ \textgreater \ 0,\\0\ \textless \ x^2\ \textless \ 1,\\\frac{1}{x}+\frac{2}{x^2}\ \textgreater \ 1;\end{array}\right. \\ \left\{\begin{array}{ccc}\frac{1}{x}+\frac{2}{x^2}\ \textgreater \ 0,\\x^2\ \textgreater \ 1,\\\frac{1}{x}+\frac{2}{x^2}\ \textless \ 1;\end{array}\right. \end{array}\right.
\left[\begin{array}{cc} \left\{\begin{array}{cc} \left [ {{-1\ \textless \ x\ \textless \ 0,} \atop {0\ \textless \ x\ \textless \ 1;}} \right.\\\frac{1}{x}+\frac{2}{x^2}-1\ \textgreater \ 0;\end{array}\right. \\ \left\{\begin{array}{ccc}\frac{x+2}{x^2}\ \textgreater \ 0,\\ \left [ {{x\ \textless \ -1,} \atop {x\ \textgreater \ 1;}} \right. \\\frac{1}{x}+\frac{2}{x^2}-1\ \textless \ 0;\end{array}\right. \end{array}\right.
\left[\begin{array}{cc} \left\{\begin{array}{cc} \left [ {{-1\ \textless \ x\ \textless \ 0,} \atop {0\ \textless \ x\ \textless \ 1;}} \right.\\-x^2+x+2\ \textgreater \ 0;\end{array}\right. \\ \left\{\begin{array}{ccc} \left \{ {{x+2\ \textgreater \ 0,} \atop {x\neq0;}} \right. \\ \left [ {{x\ \textless \ -1,} \atop {x\ \textgreater \ 1;}} \right. \\-x^2+x+2\ \textless \ 0;\end{array}\right. \end{array}\right.
\left[\begin{array}{cc} \left\{\begin{array}{cc} \left [ {{-1\ \textless \ x\ \textless \ 0,} \atop {0\ \textless \ x\ \textless \ 1;}} \right.\\(x+1)(x-2)\ \textless \ 0;\end{array}\right. \\ \left\{\begin{array}{cc} \left [ {{-2\ \textless \ x\ \textless \ -1,} \atop {x\ \textgreater \ 1;}} \right. \\(x+1)(x-2)\ \textgreater \ 0;\end{array}\right. \end{array}\right.
\left[\begin{array}{cc} \left\{\begin{array}{cc} \left [ {{-1\ \textless \ x\ \textless \ 0,} \atop {0\ \textless \ x\ \textless \ 1;}} \right.\\-1\ \textless \ x\ \textless \ 2;\end{array}\right. \\ \left\{\begin{array}{cc} \left [ {{-2\ \textless \ x\ \textless \ -1,} \atop {x\ \textgreater \ 1;}} \right. \\ \left [{ {{x\ \textless \ -1,} \atop {x\ \textgreater \ 2;}} \right. \end{array}\right. \end{array}\right.
\left[\begin{array}{cccc} -1\ \textless \ x\ \textless \ 0,\\0\ \textless \ x\ \textless \ 1,\\-2\ \textless \ x\ \textless \ -1,\\x\ \textgreater \ 2;\end{array}\right. \\ x\in(-2;-1)\cup(-1;0)\cup(0;1)\cup(2;+\infty).
(93.5k баллов)