Сделаем построение по условию.
Обозначим плоскости α , β.
Прямая m – линия пресечения плоскостей.
По условию т.А принадлежит плоскости β , |AB| ┴ α , |AB|=d
Расстояние от точки А до прямой m отрезок |AC| ┴ m .
Точка В – проекция точки А.
Расстояние от точки B до прямой m отрезок |BC| ┴ m .
По теореме о трех перпендикулярах точки А,В,С лежат в одной плоскости и образуют
прямоугольный треугольник .
Так как по условию <( α , β) =45 град, следовательно <ACB =45 град.</p>
Значит
Треугольник ∆ABC - прямоугольный, равнобедренный. |BC|=|AB|=d
По теореме Пифагора искомое расстояние AC^2 = AB^2 +BC^2 =2d ; AC=d√2
ОТВЕТ d√2