Возмьем 100 наибольших чисел этой последовательности. Наименьшее из них меньше 1 (т.к. их произведение меньше 1). Значит все оставшиеся числа последовательности не превосходят этого наименьшего, т.е. они тоже меньше 1. Значит их произведение вместе с произведением чисел из той взятой сотни меньше 1. А это и есть прозведение всех.