Найти возрастание, убывание, экстремумы функции с помощью производной. y=(4x+12)/(x+2)^2

0 голосов
49 просмотров

Найти возрастание, убывание, экстремумы функции с помощью производной.
y=(4x+12)/(x+2)^2


Алгебра (61 баллов) | 49 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Y=(4x+12)/(x+2)^2    Х не равен -2
y ' = [(4x+12)'*(x+2)^2 - (4x+12)*((x+2)^2)'] / (x+2)^4=
=[4(x+2)^2 -(4x+12)(2(x+2))] / (x+2)^4=
=(4x^2+16x+16-8x^2-40x-48)/(x+2)^2=
=(-4x^2-24x-32)/(x+2)^4
Приравняем производную к нулю:
(-4x^2-24x-32)/(x+2)^4=0
-4x^2-24x-32=0
Разделим обе части уравнения на "-4":
x^2+6x+8=0
D=6^2-4*1*8=4
x1=(-6-2)/2=-4
x2=(-6+2)/2=-2
Производная не существует в точке х=-2. Это точка разрыва функции(полюс).
______+_____-4______-_____-2_______+____
                     max.
Итак: на луче ( -беск.: -4] функция возрастает; на полуинтервале
[-4;-2) - убывает, а на промежутке (-2;+беск.) - возрастает.
Х=-4 - точка максимума, причем У max. = -1(подставили значение х=-4 в первоначальную формулу).

(14.8k баллов)