Перечислим эти правила.
Член неравенства можно перенести из одной его части в другую. При этом следует поменять знак этого члена на противоположный. Например:
3x + 4 < 10
3x < 10 – 4
Здесь положительное число 4 было перенесено из левой части неравенства в правую. При этом число стало отрицательным. Почему можно это делать? Одним из свойств числовых неравенств является следующее: если a < b, то a + c < b + c. Другими словами, если к обоим частям исходного неравенства прибавить одно и то же число, то получится равносильное неравенство.
Перенос члена неравенства из одной части в другую с противоположным знаком — это по-сути прибавление к обоим частям одного и того же числа. В приведенном выше примере к обоим частям неравенства было прибавлено число –4:
3x + 4 + (–4) < 10 + (–4)
3x < 10 – 4
Левую и правую части неравенства можно одновременно умножить или разделить на одно и тоже число. Если это число положительное, то знак неравенства не меняется. Если это число отрицательно, то знак неравенства меняется на противоположный.
Данное правило вытекает из свойства числовых неравенств. Если a < b и c > 0, то ac < bc; если же с < 0, то ac > bc. Это правило касается только умножения. Однако операцию деления можно представить, как умножение на 1/c (как дробь).
Например, неравенство 3x < 6 можно упростить, разделив обе его части на 3. Так как 3 — положительное число, то знак неравенства остается прежним. В результате получается неравенство вида x < 2, глядя на которое сразу можно сказать, что областью значения переменной x является числовой луч (–∞; 2). Именно при этих значениях переменной x исходное неравенство (которое было дано до упрощения) является верным.
Допустим, дано неравенство –0,5x ≥ 1. Здесь можно умножить обе части на –2 (чтобы получить 1x в левой части). Поскольку умножение выполняется на отрицательное число, то следует поменять знак неравенства на обратный. Получится x ≤ –2. Таким образом, неравенство –0,5x ≥ 1 верно при x ∈ (–∞; 2].