Помогите, пожалуйста, с тригонометрией 1) 2sinx+3cosx=6 2) 4-sin2x=cos^2x+2 Только...

0 голосов
74 просмотров

Помогите, пожалуйста, с тригонометрией

1) 2sinx+3cosx=6
2) 4-sin2x=cos^2x+2

Только максимально подробно, пожалуйста


Алгебра (335 баллов) | 74 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

1) Уравнения такого сорта решаются введением новой функции. Нужны формулы  Sinx = 2tgx/2 /(1 + tg²x/2)
                  Cosx = (1 - tg²x/2)/(1 + tg²x/2)
После использования этих формул получим уравнение с одним неизвестным.
4
 tgx/2 /(1 + tg²x/2) + 3 (1 - tg²x/2)/(1 + tg²x/2) = 6 | * (1 + tg²x/2) ≠ 0
4tg x/2 +3(1 - tg²x/2) = 6(1 + tg²x/2) 
4tg x/2 +3 - 3 tg²x/2  = 6 + 6 tg²x/2
9 tg²x/2 - 4tgx/2 +3 = 0
Это уравнение не имеет решения, т.к. D < 0
2)  4-Sin2x=cos^2x+2
В уравнении нужно а) сделать один и тот же угол, б) сделать одно название функции.
4 - 2SinxCosx = Cos
²x +2
Cos²x + 2SinxCosx -2= 0
Cos²x +2SinxCosx -2*1 = 0
Cos²x + 2SinxCosx -2(Sin²x + Cos²x) = 0
Cos²x + 2SinxCosx -2Sin²x -2Cos²x = 0
2SinxCosx -2Sin²x - Cos²x = 0 | : Cos²x ≠ 0
2tg x - 2tg²x -1 = 0
2tg²x -2tgx +1 = 0
Это квадратное уравнение не имеет решения, т.к. D < 0