В прямоугольнике ABCD проведена биссектриса угла A до поресечения со стороной BC в точке...

0 голосов
78 просмотров

В прямоугольнике ABCD проведена биссектриса угла A до поресечения со стороной BC в точке K. Отрезок AK=8 см, угол между диагоналями прямоугольника равен 30 градусов. Найдите стороны и площадь прямоугольника ABCD.


Геометрия (31 баллов) | 78 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

В прямоугольнике ABCD проведена биссектриса угла A до пересечения со стороной BC в точке K. Отрезок AK=8 см, угол между диагоналями прямоугольника равен 30°. Найдите стороны и площадь прямоугольника ABCD.

Обозначим точку пересечения диагоналей О. 

Диагонали прямоугольника равны и точкой пересечения делятся пополам. 

∆АОВ и ∆COD - равнобедренные, углы при АВ и CD равны по (180°-30°):2=75°⇒ 

в ∆ АВС ∠BСA=90°-75°=15°

∆ АВК - прямоугольный с острым углом ВАК=45°⇒

∠ВКА=45° ⇒ ∆ АВК равнобедренный. 

АВ=АК*sin45°=(8*√2)/2=4√2 см

В ∆ АВС по т.синусов

АВ:sin15°=BC:sin75°

По таблице синусов

sin 15° =0,2588

sin75°=0,9659 

4√2:0,2588=ВС:0,9659⇒ 

ВС=21,1127 см

S=AB•ВС=4√2•21,1127≈ 119,426 см²

------

Как вариант:

Найти из прямоугольного ∆ АВС диагональ АС:

АС=АВ:sin 15º=(4√2):0,2588

Площадь выпуклого четырехугольника  равна половине произведения его диагоналей на синус угла между ними. 

S=0,5•d₁•d₂•sinφ , где 

 d₁  и d₂ – диагонали, φ  – любой из четырёх углов между ними/

Тогда S=0,5•{4√2):0,2588}²•0,5=≈ 119,426 см²


image
(228k баллов)