Помогите вычислить с помощью первого замечательного предела lim x стремится-> 0...

0 голосов
43 просмотров

Помогите вычислить с помощью первого замечательного предела lim x стремится-> 0 x^3(1+ctg^2 3(x))/(tg3(x)),lim x стремится -> 0 sin4x-sin2x/x,очень надо,заранее спасибо


Математика (107 баллов) | 43 просмотров
Дан 1 ответ
0 голосов

 Так как верно:1+ctg
²3x=1/sin²3x, tg3x=sin3x/cos3x,то имеем:
lim  x³(1+ctg² 3(x))/(tg3(x))= lim  x³·( 1/sin²3x)/·( sin3x/cos3x)= 
x->0                                        x->0
 =lim  x³·cos3x/sin³3x=limcos3x· ( x³·/sin³3x)= =limcos3x·1/27·lim1/(sin3x/3x)³=1·1/27·1=1/27
   x->0                 x->0
lim (sin4x-sin2x)/x
x->0
 Т.к.sin4x-sin2x=2sinx·cos3x, то имеем
lim (sin4x-sin2x)/x= lim 2sinx·cos3x  /x=2lim(sin/x)·cos3x=2
x->0                         x->0
x->0 

(15.4k баллов)