Обе части неравенства можно возвести в квадрат при условии, что 4x+3>0.
(|x^2-2|)^2<(4x+3)^2<br>(x^2-2)^2-(4x+3)^2<0<br>(x^2-2-4x-3)(x^2-2+4x+3)<0<br>(x^2-4x-5)(x^2+4x+1)<0<br>Разложим первые скобки на множители:
x^2-4x-5:
D=(-4)^2-4*(-5)=36
x1,2=(4+-√36)/2=2+-3
x1=-1.
x2=5
x^2-4x-5=(x+1)(x-5)
Разложим вторые скобки на множители:
x^2+4x+1:
D=4^2-4*1=12
x1,2=(-4+-√12)/2=-2+-√3
x^2+4x+1=(x-(-2-√3))(x-(-2+√3))
Получим:
(x+1)(x-5)(x-(-2-√3))(x-(-2+√3))<0<br>Отсортируем нули левой части неравенства:
-2-√3, -1, √3-2, 5
Изобразим на прямой 0x эти точки и найдем решение:
------- -2-√3 ----- -1 ----------- √3-2 --------------------- 5 --------------->x
+ - + - +
То есть подходит x∈(-2-√3;-1)∪(√3-2;5)
Теперь учтем наложенное ранее ограничение:
4x+3>0
x>-3/4
Так как -1 < -3/4 и -3/4 < √3-2, то окончательным решением будет x∈(√3-2;5).<br>Наибольшим целым решением является x=4.