Найдите наибольшее и наименьшее значение функции y=x^ (в квадрате) ** отрезке [-3;2] Если...

0 голосов
19 просмотров

Найдите наибольшее и наименьшее значение функции y=x^ (в квадрате) на отрезке [-3;2]
Если что-то графически нужно,то покажите как,пожалуйста


Алгебра (109 баллов) | 19 просмотров
Дан 1 ответ
0 голосов

Y=x² - парабола, ветви которой направлены вверх, а вершина в точке с координатами (0;0). Эта же точка и будет наименьшим значением функции.
Если вы изучали производные, то надо найти значение функции в критических точках, для этого находят производную функции и приравнивают её к 0
y'=(x²)'=2x=0
x=0
Подставляем значение х в функцию и находим
y=0²=0
Больше критических точек нет, поэтому дальше находим значение функции на концах отрезка:
y=(-3)²=9
y=2²=4
Теперь сравниваем полученные значения и определяем наибольшее и наименьшее.

Ответ: наибольшее значение функции на отрезке [-3;2] 9, а наименьшее - 0


image
(19.5k баллов)
0

Спасибо,добрый человек! Выручил,по гроб жизни благодарна!