X^4=(2x-8)^2 - применим формулу сокращенного умножения (т.е. разность квадратов)
(x^2-2x+8)*(x^2+2x-8)=0 Произведение равно 0, если хотя бы один из множителей равен 0, а другой при этом не теряет смысла.
x^2-2x+8=0, Находим дискриминант уравнения:
D=4-32=-28, меньше 0, отсюда следует, что нет корней.
x^2+2x-8=0, D=4+32=36, √36=6
х1=2, х2=-4.