Во французской традиции, восходящей к работам Н. Бурбаки, в отличие от других математических школ натуральными принято считать числа, выражающие количество предметов в группе. Поэтому в этой традиции наименьшим натуральным числом считается ноль ("0"), а не единица, и, соотвественно, французские математики, в отличие от других, признают ноль натуральным числом. Такой подход мотивирован также теоретико-множественной моделью натурального ряда, в которой ноль отождествляется с пустым множеством (Ø), а операция перехода к следующему — с образованием множества, состоящего из всех предшествующих натуральных чисел (представленных множествами) :