Дано уравнение |cosx| = -sqrt3 * sinx
1)сosx<0<br>x∈(π/2+2πn;3π/2+2πn,n∈z) -cosx=-√3sinx cosx-√3sinx=0 2(1/2cosx-√3/2sinx)=0 2cos(x+π/3)=0 x+π/3=π/2+πn,n∈z x=π/6+πn,n∈z нет решения 2)сosx≥0 x∈[-π/2+2πn;π/2+2πn,n∈z] cosx=-√3sinx cos(x-π/3)=0 x-π/3=π/2+πn x=5π/6+πn,n∈z