Перепишем уравнение в виде dy/dx=(1+y²)*(1+x²),
откуда dy/(1+y²)=(1+x²)*dx, ∫dy/(1+y²)=∫(1+x²)*dx,
arctg(y)=x+x³/3+C, arctg(1)=C, откуда arctg(y0)=x+x³/3+arctg(1). Так как
arctg(1)=π/4, то arctg(y0)=x+x³/3+π/4 и y0=tg(x+x³/3+π/4)
Ответ: y0=tg(x+x³/3+π/4).