(x - 2)⁴ + (x - 2)² - 6 = 0
Для решения этого уравнения используем метод замены — заменим одну из частей уравнения на временную переменную.
В данном случае удобнее всего будет заменить (x - 2)²
t = (x - 2)²
Также не следует забывать, что квадрат числа не может принимать отрицательные значения, поэтому на t будет наложено ограничение
t ≥ 0
Получим новое уравнение уже с другой переменной
t² + t - 6 = 0
Решим это квадратное уравнение удобным для нас способом. В данном случае удобнее всего решать с помощью теоремы Виета, но можно и с помощью дискриминанта. Получим корни
t₁ = -3
t₂ = 2
Теперь вернемся к замене.
t ≥ 0, значит корень -3 не удовлетворяет условию.
Корень 2 подходит, поэтому подставим вместо t выражения для замены
(x - 2)² = 2
Извлечем квадратный корень из обеих частей уравнения, при этом получим уже совокупность уравнений
x - 2 = ±√2
[ x - 2 = √2
[ x - 2 = -√2
[ x = 2 + √2
[ x = 2 - √2
Это и есть решения уравнения
Ответ: 2 + √2; 2 - √2