Выполните задание срочно

0 голосов
35 просмотров

Выполните задание срочно


image

Алгебра (322 баллов) | 35 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Решите задачу:

( \frac{ \sqrt{x} +1}{ \sqrt{x} -1} - \frac{ \sqrt{x} -1}{ \sqrt{x} +1} ) * ( \sqrt{x} - \frac{1}{ \sqrt{x} } ) = \\ \\ 
= \frac{( \sqrt{x} +1)^2 - ( \sqrt{x} -1)^2}{( \sqrt{x} )^2- 1^2 } * \frac{( \sqrt{x} )^2-1}{ \sqrt{x} } = \\ \\ 
= \frac{x +2 \sqrt{x} +1 - (x-2 \sqrt{x} +1) }{x-1} * \frac{x-1}{ \sqrt{x} } = \\ \\ 
= \frac{x+2 \sqrt{x} +1-x+2 \sqrt{x} -1}{x-1} * \frac{x-1}{ \sqrt{x} } = \\ \\ 
= \frac{4 \sqrt{x} }{x-1} * \frac{x-1}{ \sqrt{x} } = \frac{4}{1} =4
(271k баллов)