Плоскость, параллельная плоскости основания правильной четырехугольной пирамиды, делит...

0 голосов
330 просмотров

Плоскость, параллельная плоскости основания правильной четырехугольной пирамиды, делит высоту пирамиды в отношении 1:2, считая от вершины пирамиды. Апофема полученной усеченной пирамиды равна 4 дм, а площадь ее полной поверхности равна 186 дм2.Найти высоту усеченной пирамиды.если можно то , с рисунком


Геометрия (24 баллов) | 330 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

M=4 дм - апофема усечённой пирамиды.
Пусть сторона большего основания равна а, тогда сторона меньшего а/3.
Сумма площадей оснований: Sосн=а²+(а/3)²=10а²/9.
Площадь боковой поверхности усеч. пирамиды: Sбок=0.5(а+а/3)·m·4=32а/3.
Площадь полной поверхности усеч. пирамиды: S=(10а²/9)+(32а/3)=186 ⇒⇒
5а²+48а-837=0
а1=-93/5 - отрицательное значение не подходит.
а2=9.
Рассмотрим прямоугольный тр-ник, образованный апофемой (m), высотой проведённой из вершины к основанию (h)и отрезком основания их соединяющим. Этот отрезок равен половине разности оснований пирамиды: b=(а-а/3)/2=(9-9/3)/2=3 дм.
h²=m²-b²=4²-3²=7
h=√7 дм.
Ответ: высота усечённой пирамиды равна 7 дм.


image
(34.9k баллов)