Дан треугольник АВС, углы А и С равны. Доказать, что треугольник равнобедренный.
Перевернем треугольник АВС. Получмим новый треугольник С1ВА1. Тоску С1 совместим с точкой А, луч С1А1 направим по лучу АС и совместим их. Треугольники АВС и С1ВА1 равны по стороне и двум прилежащим к ней углам. Но в равных треугольниках против равных углов лежат равные стороны. Против угла А лежит сторона ВС, а против угла С1 лежит сторона ВА1. Значит эти стороны равны, но ВА1 равна АВ значит АВ=ВС, треугольник имеет две равные стороны, значит он равнобедренный.