Теорема косинусов: квадрат стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними:
AC²=AB²+BC²-2*AB*BC*cos∠B
Известно, что АВ=ВС+4. Подставляем все известные значения в формулу:
14²=(ВС+4)²+ВС²-2(ВС+4)*ВС*cos120°
196=BC²+8BC+16+BC²-2(BC+4)*BC*(-1/2)
196=2BC²+8BC+16+BC²+4BC
3BC²+12BC-196+16=0
3BC²+12BC-180=0 |:3
BC²+4BC-60=0
D=4²-4*(-60)=16+240=256=16²
BC=(-4-16)/2=-10 - не подходит
BC=(-4+16)/2=6 см
АВ=6+4=10 см
Ответ: АВ=10 см, ВС=6 см.