В прямоугольном треугольнике MNP с катетами MN = 5 и NP = 12 провели отрезок, соединяющий...

0 голосов
74 просмотров

В прямоугольном треугольнике MNP с катетами MN = 5 и NP = 12 провели отрезок, соединяющий середины сторон MN и МР. На этом отрезке, как на диаметре, построена окружность. Найдите длину отрезка гипотенузы МР, который лежит внутри этой окружности.


Математика (12 баллов) | 74 просмотров
Дан 1 ответ
0 голосов

Гипотенуза MP = 13 по теореме Пифагора.
Средняя линия, на которой, как на диаметре, строили окружность - 13/2.
Эта же окружность будет являться описанной для маленького треугольника, образованного средней линией и половинами сторон MNP.
Высота этого треугольничка: 5/2 * 6 = h * 13/2; h = 30/13
Таким образом, задача сводится к нахождению хорды окружности, лежащей на расстоянии 30/13 от центра.
Половинку этой хорды найдём по теореме Пифагора:
a^2 = (13/4)^2 + (30/13)^2
a = 119/52
Вся хорда, т.е. искомый отрезок из условия задачи
2а = 119/26
Ответ: 119/26

(1.1k баллов)