Ряд функциональный и степенной. Для нахождения области сходимости надо использовать признак Даламбера и найти предел (Прямые скобки обозначают модуль):
lim = |((n+1)x^(n+2)/(2^(n+1))/(nx^(n+1)/2^n)| = lim |((n+1)x^(n+2)*2^n)/(nx^(n+1)*2^(n+1))| =
x->+∞ x->+∞
=lim |((n+1)*(x^n)*(x^2)*(2^n))/(n*(x^n)*x*(2^n)*2)| = lim |(n+1)*x/2n| = |x|/2*lim (n+1)/n =
x->+∞ x->+∞ x->+∞
= |x|/2*1 = |x|/2
Теперь нужно решить неравенство
|x|/2<1</p>
-1
-2