решите уравнение |cosx|= - ( sqrt{3} )*sinx [2p; 7p/2]

0 голосов
51 просмотров

решите уравнение |cosx|= - ( sqrt{3} )*sinx [2p; 7p/2]


Алгебра (36 баллов) | 51 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

1)cosx<0⇒x∈(π/2+2πn;3π/2+2πn,n∈z)<br>-cosx+√3sinx=0
2(√3/2sinx-1/2cosx)=0
2sin(x-π/6)=0
x-π/6=πn
x=π/6+πn U x∈(π/2+2πn;3π/2+2πn,n∈z)⇒x=7π/6+2πn
2π≤7π/6+2πn≤7π/2
12≤7+12n≤21
5≤12n≤14
5/12≤n≤7/6
n=1⇒x=7π/6+2π=19π/6
2)cosx≥0⇒x∈[-π/2+2πk;π/2+2πk,k∈z]
cosx+√3sinx=0
2sin(x+π/6)=0
x+π/6=πk
x=-π/6+πk U x∈[-π/2+2πk;π/2+2πk,k∈z]⇒x=π/6+2πk
2π≤π/6+2πk≤7π/2
12≤1+12k≤21
11≤12k≤20
11/12≤k≤5/3
k=1⇒x=π/6+2π=13π/6

(750k баллов)