1)
![cos\frac{\pi(x-49)}{21}=0,5\\\\ \frac{\pi(x-49)}{21}=\frac{\pi}{3}+2\pi k \ k \in Z \ \frac{\pi(x-49)}{21}=\frac{2\pi}{3}+2\pi k \ k \in Z\\ \pi(x-49)=7\pi+42\pi k \ k \in Z \ \pi(x-49)=14\pi+42\pi k \ k \in Z \\ x-49=7+42k \ k \in Z \ x-49=14+42k \ k \in Z \\ x= 56+42k \ k \in Z \ x=63 +42k \ k \in Z \\ cos\frac{\pi(x-49)}{21}=0,5\\\\ \frac{\pi(x-49)}{21}=\frac{\pi}{3}+2\pi k \ k \in Z \ \frac{\pi(x-49)}{21}=\frac{2\pi}{3}+2\pi k \ k \in Z\\ \pi(x-49)=7\pi+42\pi k \ k \in Z \ \pi(x-49)=14\pi+42\pi k \ k \in Z \\ x-49=7+42k \ k \in Z \ x-49=14+42k \ k \in Z \\ x= 56+42k \ k \in Z \ x=63 +42k \ k \in Z \\](https://tex.z-dn.net/?f=cos%5Cfrac%7B%5Cpi%28x-49%29%7D%7B21%7D%3D0%2C5%5C%5C%5C%5C+%5Cfrac%7B%5Cpi%28x-49%29%7D%7B21%7D%3D%5Cfrac%7B%5Cpi%7D%7B3%7D%2B2%5Cpi+k+%5C+k+%5Cin+Z+%5C+%5Cfrac%7B%5Cpi%28x-49%29%7D%7B21%7D%3D%5Cfrac%7B2%5Cpi%7D%7B3%7D%2B2%5Cpi+k+%5C+k+%5Cin+Z%5C%5C+%5Cpi%28x-49%29%3D7%5Cpi%2B42%5Cpi+k+%5C+k+%5Cin+Z+%5C+%5Cpi%28x-49%29%3D14%5Cpi%2B42%5Cpi+k+%5C+k+%5Cin+Z+%5C%5C+x-49%3D7%2B42k+%5C+k+%5Cin+Z+%5C+x-49%3D14%2B42k+%5C+k+%5Cin+Z+%5C%5C+x%3D+56%2B42k+%5C+k+%5Cin+Z+%5C+x%3D63+%2B42k+%5C+k+%5Cin+Z+%5C%5C+)
Соответсвенно наименьший положительный корень 56
Ответ:{56}
2)4sin^2(a)=4(1-cos^2(a)) - известный факт
![1+4sin^2\frac{\pi(x-3)}{24}+8cos\frac{\pi(x-3)}{24}=0\\ 5-4cos^2\frac{\pi(x-3)}{24}+8cos\frac{\pi(x-3)}{24}=0\\ 4cos^2\frac{\pi(x-3)}{24}-8cos\frac{\pi(x-3)}{24}-5=0\\ \\ D=8^2+4*4*5=64+80=144=12^2 1+4sin^2\frac{\pi(x-3)}{24}+8cos\frac{\pi(x-3)}{24}=0\\ 5-4cos^2\frac{\pi(x-3)}{24}+8cos\frac{\pi(x-3)}{24}=0\\ 4cos^2\frac{\pi(x-3)}{24}-8cos\frac{\pi(x-3)}{24}-5=0\\ \\ D=8^2+4*4*5=64+80=144=12^2](https://tex.z-dn.net/?f=1%2B4sin%5E2%5Cfrac%7B%5Cpi%28x-3%29%7D%7B24%7D%2B8cos%5Cfrac%7B%5Cpi%28x-3%29%7D%7B24%7D%3D0%5C%5C+5-4cos%5E2%5Cfrac%7B%5Cpi%28x-3%29%7D%7B24%7D%2B8cos%5Cfrac%7B%5Cpi%28x-3%29%7D%7B24%7D%3D0%5C%5C+4cos%5E2%5Cfrac%7B%5Cpi%28x-3%29%7D%7B24%7D-8cos%5Cfrac%7B%5Cpi%28x-3%29%7D%7B24%7D-5%3D0%5C%5C+%5C%5C+D%3D8%5E2%2B4%2A4%2A5%3D64%2B80%3D144%3D12%5E2+)
![cos\frac{\pi(x-3)}{24}=\frac{8+12}{2*4}=2,5\\ cos\frac{\pi(x-3)}{24}=\frac{8-12}{2*4}=-0,5\\ cos\frac{\pi(x-3)}{24}=\frac{8+12}{2*4}=2,5\\ cos\frac{\pi(x-3)}{24}=\frac{8-12}{2*4}=-0,5\\](https://tex.z-dn.net/?f=cos%5Cfrac%7B%5Cpi%28x-3%29%7D%7B24%7D%3D%5Cfrac%7B8%2B12%7D%7B2%2A4%7D%3D2%2C5%5C%5C+cos%5Cfrac%7B%5Cpi%28x-3%29%7D%7B24%7D%3D%5Cfrac%7B8-12%7D%7B2%2A4%7D%3D-0%2C5%5C%5C+)
![cos\frac{\pi(x-3)}{24}=-0,5\\ \frac{\pi(x-3)}{24}=-\frac{\pi}{3}+2\pi k \ k \in Z \ \frac{\pi(x-3)}{24}=-\frac{2\pi}{3}+2\pi k \ k \in Z \\ \pi(x-3)=-8\pi+48\pi k \ k \in Z \ \pi(x-3)=-16\pi+48\pi k \ k \in Z \\ x-3=-8+48k \ k \in Z \ x-3=-16+48k \ k \in Z \\ x=-5+48k \ k \in Z \ x=-13+48k \ k \in Z\\ cos\frac{\pi(x-3)}{24}=-0,5\\ \frac{\pi(x-3)}{24}=-\frac{\pi}{3}+2\pi k \ k \in Z \ \frac{\pi(x-3)}{24}=-\frac{2\pi}{3}+2\pi k \ k \in Z \\ \pi(x-3)=-8\pi+48\pi k \ k \in Z \ \pi(x-3)=-16\pi+48\pi k \ k \in Z \\ x-3=-8+48k \ k \in Z \ x-3=-16+48k \ k \in Z \\ x=-5+48k \ k \in Z \ x=-13+48k \ k \in Z\\](https://tex.z-dn.net/?f=cos%5Cfrac%7B%5Cpi%28x-3%29%7D%7B24%7D%3D-0%2C5%5C%5C+%5Cfrac%7B%5Cpi%28x-3%29%7D%7B24%7D%3D-%5Cfrac%7B%5Cpi%7D%7B3%7D%2B2%5Cpi+k+%5C+k+%5Cin+Z+%5C+%5Cfrac%7B%5Cpi%28x-3%29%7D%7B24%7D%3D-%5Cfrac%7B2%5Cpi%7D%7B3%7D%2B2%5Cpi+k+%5C+k+%5Cin+Z+%5C%5C+%5Cpi%28x-3%29%3D-8%5Cpi%2B48%5Cpi+k+%5C+k+%5Cin+Z+%5C+%5Cpi%28x-3%29%3D-16%5Cpi%2B48%5Cpi+k+%5C+k+%5Cin+Z+%5C%5C+x-3%3D-8%2B48k+%5C+k+%5Cin+Z+%5C+x-3%3D-16%2B48k+%5C+k+%5Cin+Z+%5C%5C+x%3D-5%2B48k+%5C+k+%5Cin+Z+%5C+x%3D-13%2B48k+%5C+k+%5Cin+Z%5C%5C)
Наибольший отрицательный корень -5
Ответ:{-5}
3)cos(2a)=cos^2(2a)-sin^2(2a) - известный факт; ' - градус
![cos0,5x+cos0,25x=0\\ cos^20,25x+cos0,25x-sin^20,25x=0\\ 2cos^20,25x+cos0,25x-1=0\\ D=1^2+2*4*1=9=3^2 cos0,5x+cos0,25x=0\\ cos^20,25x+cos0,25x-sin^20,25x=0\\ 2cos^20,25x+cos0,25x-1=0\\ D=1^2+2*4*1=9=3^2](https://tex.z-dn.net/?f=cos0%2C5x%2Bcos0%2C25x%3D0%5C%5C+cos%5E20%2C25x%2Bcos0%2C25x-sin%5E20%2C25x%3D0%5C%5C+2cos%5E20%2C25x%2Bcos0%2C25x-1%3D0%5C%5C+D%3D1%5E2%2B2%2A4%2A1%3D9%3D3%5E2+)
![cos0,25x=\frac{-1+3}{2*2}=0,5\\ cos0,25x=\frac{-1-3}{2*2}=-1\\ \\ 0,25x=60'+360'k \ k \in Z\\ 0,25x=180'+360'k \ k \in Z\\ \\ x=240'+1440'k \ k \in Z\\ x=720'+1440'k \ k \in Z\\ cos0,25x=\frac{-1+3}{2*2}=0,5\\ cos0,25x=\frac{-1-3}{2*2}=-1\\ \\ 0,25x=60'+360'k \ k \in Z\\ 0,25x=180'+360'k \ k \in Z\\ \\ x=240'+1440'k \ k \in Z\\ x=720'+1440'k \ k \in Z\\](https://tex.z-dn.net/?f=cos0%2C25x%3D%5Cfrac%7B-1%2B3%7D%7B2%2A2%7D%3D0%2C5%5C%5C+cos0%2C25x%3D%5Cfrac%7B-1-3%7D%7B2%2A2%7D%3D-1%5C%5C+%5C%5C+0%2C25x%3D60%27%2B360%27k+%5C+k+%5Cin+Z%5C%5C+0%2C25x%3D180%27%2B360%27k+%5C+k+%5Cin+Z%5C%5C+%5C%5C+x%3D240%27%2B1440%27k+%5C+k+%5Cin+Z%5C%5C+x%3D720%27%2B1440%27k+%5C+k+%5Cin+Z%5C%5C)
Наименьший положительный угол 240'
Ответ:{240'}
4)
![2sin^2X-(2+\sqrt{2})sinXcosX+\sqrt{2}cos^2X=0\\ 2sinX(sinX-cosX)-\sqrt{2}cosX(sinX-cosX)=0\\ (2sinX-\sqrt{2}cosX)(sinX-cosX)=0\\ \\ cosX=sinX\\ 2sinX=\sqrt{2}cosX\\ \\ X=45'+180'k \ k \in Z\\ 2sin^2X-(2+\sqrt{2})sinXcosX+\sqrt{2}cos^2X=0\\ 2sinX(sinX-cosX)-\sqrt{2}cosX(sinX-cosX)=0\\ (2sinX-\sqrt{2}cosX)(sinX-cosX)=0\\ \\ cosX=sinX\\ 2sinX=\sqrt{2}cosX\\ \\ X=45'+180'k \ k \in Z\\](https://tex.z-dn.net/?f=2sin%5E2X-%282%2B%5Csqrt%7B2%7D%29sinXcosX%2B%5Csqrt%7B2%7Dcos%5E2X%3D0%5C%5C+2sinX%28sinX-cosX%29-%5Csqrt%7B2%7DcosX%28sinX-cosX%29%3D0%5C%5C+%282sinX-%5Csqrt%7B2%7DcosX%29%28sinX-cosX%29%3D0%5C%5C+%5C%5C+cosX%3DsinX%5C%5C+2sinX%3D%5Csqrt%7B2%7DcosX%5C%5C+%5C%5C+X%3D45%27%2B180%27k+%5C+k+%5Cin+Z%5C%5C+)
Наибольший отрицательный корень -135'
Ответ:{-135'}