В треугольнике ABC AC=BC, AB=15, sinA= корень из 15/4. Найдите АС.

0 голосов
48 просмотров

В треугольнике ABC AC=BC, AB=15, sinA= корень из 15/4. Найдите АС.


Геометрия (15 баллов) | 48 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Треугольник АВС - равнобедренный. Высота СН является в нем еще биссектрисой и медианой и делит его на два равных прямоугольных треугольника . АН=ВН=7,5.
АС=АН:cosA. 
Из тригонометрического тождества 
cos ^{2} \alpha +sin ^{2} \alpha =1
находим
cosA= \sqrt{1- \frac{15}{16} } = \frac{1}{4}
откуда
АС=7,5:0,25=30 (ед. длины)

(228k баллов)