Нужно решить все номера .вложение внутри

0 голосов
38 просмотров

Нужно решить все номера .вложение внутри


image

Алгебра (60 баллов) | 38 просмотров
Дан 1 ответ
0 голосов

A1.
a) (3x^5-2x^2)'=15x^4-4x
б) (2x^8-5)'=16x^7
в) (tgx-2cosx)'=\frac{1}{cos^2x}+2sinx
г) (sin(3x-\frac{\pi}{4}))'=cos(3x-\frac{\pi}{4})*(3x-\frac{\pi}{4})'=3cos(3x-\frac{\pi}{4})

A2.
a) ((x^3+3)(x-x^3))'=(x^4-x^6+3x-3x^3)'=4x^3-6x^5+3-6x^2
б) (\frac{x^4-x^2}{x-1})'=\frac{(x^4-x^2)'(x-1)-(x^4-x^2)(x-1)'}{(x-1)^2}=\\
=\frac{(4x^3-2x)(x-1)-(x^4-x^2)}{(x-1)^2}=\frac{2x(2x^2-1)(x-1)-x^2(x-1)(x+1)}{(x-1)^2}=\\
=\frac{(x-1)(4x^3-2x-x^3-x^2)}{(x-1)^2}=\frac{3x^3-x^2-2x}{x-1}=\frac{x(3x^2-x-2)}{x-1}=\frac{3x(x-1)(x+\frac{2}{3})}{x-1}=\\
=x(3x+2)

f(x)=0.5cos(3x-\frac{\pi}{6}), x_0=\frac{\pi}{9}\\
f'(x)=-0.5*3sin(3x-\frac{\pi}{6})=-1,5sin(3x-\frac{\pi}{6})\\
f'(x_0)=-1.5*sin(\frac{\pi}{3}-\frac{\pi}{6})=-1.5sin\frac{\pi}{6}=-1.5*0.5=-0.75

В1.
f(x)=6x+x\sqrt{x}=6x+x^{3/2}\\
f'(x)=6+\frac{3}{2}x^{1/2}\ \textgreater \ 0|*2\\
12+3\sqrt{x}\ \textgreater \ 0|:3\\
4+\sqrt{x}\ \textgreater \ 0\\
\sqrt{x}\ \textgreater \ -4\\
x\geq 0

В2.
y=\frac{x+4}{\sqrt{x}}\\
y'=\frac{\sqrt{x}-(x+4)\frac{1}{2\sqrt{x}}}{x}=\frac{2x-x-4}{2x\sqrt{x}}=\frac{x-4}{2x\sqrt{x}}

С1.
y=(3-x)^4(2x+1)^3\\
y'=4(3-x)^3(-1)(2x+1)^3+(3-x)^43(2x+1)^22=\\=
-4(3-x)^3(2x+1)^3+6(3-x)^4(2x+1)^2=2(3-x)^3(2x+1)^2*\\*(-2(2x+1)+3(3-x))=2(3-x)^3(2x+1)^2(-4x-2+9-3x)=\\=
-2(x-3)^3(2x+1)^2(-7x+7)=14(x-3)^3(2x+1)^2(x-1)\\
y'\ \textless \ 0\\
(x-3)^3(2x+1)^2(x-1)\ \textless \ 0
___+___-1/2___+___1___-___3___+___
1\ \textless \ x\ \textless \ 3

(6.3k баллов)