Решите уравнение: 3cos^2 x+7sinx-5=0

0 голосов
101 просмотров

Решите уравнение: 3cos^2 x+7sinx-5=0


Алгебра (190 баллов) | 101 просмотров
Дан 1 ответ
0 голосов

3(1-sin²x)+7sinx-5=0
3-3sin²x+7sinx-5=0
3sin²x-7sinx+2=0
sinx=t, |t|≤0
3t²-7t+2=0
D=49-24=25, √25=5
t₁=(7+5)/6=2, |2|≤0, не удовлетворяет условию
t₂=(7-5)/6=2/6=1/3
sinx=1/3, x=((-1)^n)*arcsin(1/3)+πn, n∈Z
ответ: х=(-1)^{n} arcsin \frac{1}{3}+ \pi ,, n∈Z

(10.8k баллов)