1). Есть теорема о неравенстве треугольника: "Каждая сторона треугольника меньше суммы двух других сторон".
Следовательно, если возьмем большую сторону и сумма двух других сторон будет БОЛЬШЕ этой стороны, то такой треугольник существует и его можно построить.
В нашем случае это треугольник а) со сторонами 4,3 и5.
Чтобы построить треугольник с этими сторонами, проводим прямую "а" и откладываем на ней отрезок АВ, равный любой из сторон. Например, отрезок, равный 5 см. Из концов этого отрезка радиусами, равными 4 см и 3 см, проводим циркулем дуги до их пересечения с одной стороны от прямой "а". Обозначим точку пересечения этих дуг точкой С. Соединив точки А и С, В и С, получаем искомый треугольник со сторонами 3см,4см и 5см.
2). Этот алгоритм построения треугольника по его сторонам применим и в случае равнобедренного треугольника. Нам дана сторона основания и боковая сторона треугольника. Вспомним, что боковые стороны равнобедренного треугольника равны. И за дело: на прямой "а" откладываем отрезок АВ, равный данному основанию (замерив его циркулем). И из точек А и В раствором циркуля, равным боковой стороне, делаем засечки с одной стороны от прямой. Точка пересечения этих засечек и будет вершиной С равнобедренного треугольника АВС, в котором АС=ВС.
3). Алгоритм уже сформулирован в пунктах 1) и 2).