Решение
По
теореме Виета имеем: x₁ + x₂ = 2n
x₁ * x₂ = 22n² + 8n
x₁² +
x₂² = (x₁+ x₂)² – 2x₁*x₂ = (2n)² – 2*(22n² + 8n) =
= 4n² – 44n² – 16n = - 40n² – 16n
f(n) = - 40n² – 16n
f `(n) =
- 80n - 16
- 80n –
16 = 0
80n = -
16
n= - 1/5
D = 4n² – 4*(22n² + 8n) = 4n² – 88n² – 32n = - 84n² – 32n
- 84n² –
32n > 0
- 4n(21n
+ 8) > 0
4n(21n +
8) < 0
4n(21n +
8) = 0
n₁ = 0
21n + 8 = 0
n₂ = - 8/21