1)![\frac{sin35+sin25}{cos50+cos40}=\frac{2sin30*cos5}{2cos45*cos5}=\frac{\frac{1}{2}}{\frac{\sqrt{2}}{2}}=\frac{1}{\sqrt{2}} \frac{sin35+sin25}{cos50+cos40}=\frac{2sin30*cos5}{2cos45*cos5}=\frac{\frac{1}{2}}{\frac{\sqrt{2}}{2}}=\frac{1}{\sqrt{2}}](https://tex.z-dn.net/?f=%5Cfrac%7Bsin35%2Bsin25%7D%7Bcos50%2Bcos40%7D%3D%5Cfrac%7B2sin30%2Acos5%7D%7B2cos45%2Acos5%7D%3D%5Cfrac%7B%5Cfrac%7B1%7D%7B2%7D%7D%7B%5Cfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D%7D%3D%5Cfrac%7B1%7D%7B%5Csqrt%7B2%7D%7D)
2)![\frac{sin4\alpha+sin10\alpha}{cos4\alpha+cos10\alpha}=\frac{2sin7\alpha*cos3\alpha}{2cos7\alpha*cos3\alpha}=tg7\alpha \frac{sin4\alpha+sin10\alpha}{cos4\alpha+cos10\alpha}=\frac{2sin7\alpha*cos3\alpha}{2cos7\alpha*cos3\alpha}=tg7\alpha](https://tex.z-dn.net/?f=%5Cfrac%7Bsin4%5Calpha%2Bsin10%5Calpha%7D%7Bcos4%5Calpha%2Bcos10%5Calpha%7D%3D%5Cfrac%7B2sin7%5Calpha%2Acos3%5Calpha%7D%7B2cos7%5Calpha%2Acos3%5Calpha%7D%3Dtg7%5Calpha)
3)
[/tex]
4)![cos3x*cos7x=cosx*cos9x\\cos10x+cos4x=cos10x+cos8x\\cos8x-cos4x=0\\-2sin6x*sin2x=0\\sin6x=0\ \ \ \ \ \ \ \ \ \ \ \ sin2x=0\\6x=\pi*n\ \ \ \ \ \ \ \ \ \ \ 2x=\pi*k\\x=\frac{\pi}{6}*n\ \ \ \ \ \ \ \ \ \ \ \ x=\frac{\pi}{2}*k cos3x*cos7x=cosx*cos9x\\cos10x+cos4x=cos10x+cos8x\\cos8x-cos4x=0\\-2sin6x*sin2x=0\\sin6x=0\ \ \ \ \ \ \ \ \ \ \ \ sin2x=0\\6x=\pi*n\ \ \ \ \ \ \ \ \ \ \ 2x=\pi*k\\x=\frac{\pi}{6}*n\ \ \ \ \ \ \ \ \ \ \ \ x=\frac{\pi}{2}*k](https://tex.z-dn.net/?f=cos3x%2Acos7x%3Dcosx%2Acos9x%5C%5Ccos10x%2Bcos4x%3Dcos10x%2Bcos8x%5C%5Ccos8x-cos4x%3D0%5C%5C-2sin6x%2Asin2x%3D0%5C%5Csin6x%3D0%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+sin2x%3D0%5C%5C6x%3D%5Cpi%2An%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+2x%3D%5Cpi%2Ak%5C%5Cx%3D%5Cfrac%7B%5Cpi%7D%7B6%7D%2An%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+x%3D%5Cfrac%7B%5Cpi%7D%7B2%7D%2Ak)
5)![\frac{1}{cos^2\alpha}-tg^2\alpha-sin^2\alpha=1+tg^2\alpha-tg^2\alpha-sin^2\alpha=1-sin^2\alpha=\\=cos^2\alpha \frac{1}{cos^2\alpha}-tg^2\alpha-sin^2\alpha=1+tg^2\alpha-tg^2\alpha-sin^2\alpha=1-sin^2\alpha=\\=cos^2\alpha](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7Bcos%5E2%5Calpha%7D-tg%5E2%5Calpha-sin%5E2%5Calpha%3D1%2Btg%5E2%5Calpha-tg%5E2%5Calpha-sin%5E2%5Calpha%3D1-sin%5E2%5Calpha%3D%5C%5C%3Dcos%5E2%5Calpha)
6)![\frac{sin^211+sin^279}{cos^253+cos^237}=\frac{cos^279+sin^279}{sin^337+cos^337}=1 \frac{sin^211+sin^279}{cos^253+cos^237}=\frac{cos^279+sin^279}{sin^337+cos^337}=1](https://tex.z-dn.net/?f=%5Cfrac%7Bsin%5E211%2Bsin%5E279%7D%7Bcos%5E253%2Bcos%5E237%7D%3D%5Cfrac%7Bcos%5E279%2Bsin%5E279%7D%7Bsin%5E337%2Bcos%5E337%7D%3D1)
7)![cos\frac{314\pi}{5}*sin\frac{385\pi}{8}*tg\frac{182\pi}{9}=cos\frac{4\pi}{5}*sin\frac{\pi}{8}*tg\frac{2\pi}{9} cos\frac{314\pi}{5}*sin\frac{385\pi}{8}*tg\frac{182\pi}{9}=cos\frac{4\pi}{5}*sin\frac{\pi}{8}*tg\frac{2\pi}{9}](https://tex.z-dn.net/?f=cos%5Cfrac%7B314%5Cpi%7D%7B5%7D%2Asin%5Cfrac%7B385%5Cpi%7D%7B8%7D%2Atg%5Cfrac%7B182%5Cpi%7D%7B9%7D%3Dcos%5Cfrac%7B4%5Cpi%7D%7B5%7D%2Asin%5Cfrac%7B%5Cpi%7D%7B8%7D%2Atg%5Cfrac%7B2%5Cpi%7D%7B9%7D)
- угол 2 четверти===> отрицательный.
- угол 1 четверти ===> положительный.
- угол 1 четверти ===> положительный.
Знак числа отрицательный.
8)![\frac{sin^2(\frac{\pi}{2}+\alpha)-cos^2(\frac{\pi}{2}-\alpha)}{sin\alpha+cos\alpha}-cos(\frac{\pi}{2}+\alpha)=\frac{cos^2\alpha-sin^2\alpha}{sin\alpha+cos\alpha}+sin\alpha=\\=\frac{(cos\alpha-sin\alpha)(cos\alpha+sin\alpha)}{cos\alpha+sin\alpha}+sin\alpha=cos\alpha-sin\alpha+sin\alpha=cos\alpha \frac{sin^2(\frac{\pi}{2}+\alpha)-cos^2(\frac{\pi}{2}-\alpha)}{sin\alpha+cos\alpha}-cos(\frac{\pi}{2}+\alpha)=\frac{cos^2\alpha-sin^2\alpha}{sin\alpha+cos\alpha}+sin\alpha=\\=\frac{(cos\alpha-sin\alpha)(cos\alpha+sin\alpha)}{cos\alpha+sin\alpha}+sin\alpha=cos\alpha-sin\alpha+sin\alpha=cos\alpha](https://tex.z-dn.net/?f=%5Cfrac%7Bsin%5E2%28%5Cfrac%7B%5Cpi%7D%7B2%7D%2B%5Calpha%29-cos%5E2%28%5Cfrac%7B%5Cpi%7D%7B2%7D-%5Calpha%29%7D%7Bsin%5Calpha%2Bcos%5Calpha%7D-cos%28%5Cfrac%7B%5Cpi%7D%7B2%7D%2B%5Calpha%29%3D%5Cfrac%7Bcos%5E2%5Calpha-sin%5E2%5Calpha%7D%7Bsin%5Calpha%2Bcos%5Calpha%7D%2Bsin%5Calpha%3D%5C%5C%3D%5Cfrac%7B%28cos%5Calpha-sin%5Calpha%29%28cos%5Calpha%2Bsin%5Calpha%29%7D%7Bcos%5Calpha%2Bsin%5Calpha%7D%2Bsin%5Calpha%3Dcos%5Calpha-sin%5Calpha%2Bsin%5Calpha%3Dcos%5Calpha)
9)![\frac{cos^2\alpha}{1-sin\alpha}-sin\alpha=\frac{1-sin^2\alpha}{1-sin\alpha}-sin\alpha=\frac{(1-sin\alpha)(1+sin\alpha)}{1-sina\alpha}-sin\alpha=\\=1+sin\alpha-sin\alpha=1 \frac{cos^2\alpha}{1-sin\alpha}-sin\alpha=\frac{1-sin^2\alpha}{1-sin\alpha}-sin\alpha=\frac{(1-sin\alpha)(1+sin\alpha)}{1-sina\alpha}-sin\alpha=\\=1+sin\alpha-sin\alpha=1](https://tex.z-dn.net/?f=%5Cfrac%7Bcos%5E2%5Calpha%7D%7B1-sin%5Calpha%7D-sin%5Calpha%3D%5Cfrac%7B1-sin%5E2%5Calpha%7D%7B1-sin%5Calpha%7D-sin%5Calpha%3D%5Cfrac%7B%281-sin%5Calpha%29%281%2Bsin%5Calpha%29%7D%7B1-sina%5Calpha%7D-sin%5Calpha%3D%5C%5C%3D1%2Bsin%5Calpha-sin%5Calpha%3D1)
10)
cos^2\alpha=\frac{1}{1+tg^2\alpha}=\frac{1}{1+\frac{576}{49}}=\frac{49}{625};\\sin^2\alpha=1-cos^2\alpha=1-\frac{49}{625}=\frac{576}{625}" alt="ctg\alpha=-\frac{7}{24};tg\alpha=-\frac{24}{7};\\1+tg^2\alpha=\frac{1}{cos^2\alpha}===>cos^2\alpha=\frac{1}{1+tg^2\alpha}=\frac{1}{1+\frac{576}{49}}=\frac{49}{625};\\sin^2\alpha=1-cos^2\alpha=1-\frac{49}{625}=\frac{576}{625}" align="absmiddle" class="latex-formula">
- минус потомучто угол 2 четверти
.
Ответ: ![sin\alpha=\frac{24}{25};cos\alpha=-\frac{7}{25};tg\alpha=-\frac{24}{7} sin\alpha=\frac{24}{25};cos\alpha=-\frac{7}{25};tg\alpha=-\frac{24}{7}](https://tex.z-dn.net/?f=sin%5Calpha%3D%5Cfrac%7B24%7D%7B25%7D%3Bcos%5Calpha%3D-%5Cfrac%7B7%7D%7B25%7D%3Btg%5Calpha%3D-%5Cfrac%7B24%7D%7B7%7D)
11) непомню как решать))
12)![2cosx-3sinx*cosx=0\\cosx(2-3sinx)=0\\cosx=0\ \ \ \ \ \ \ \ \ \ \ 2-3sinx=0\\x=\frac{\pi}{2}+\pi*n \ \ \ \ sinx=\frac{2}{3}\\ x=\frac{\pi}{2}+\pi*n \ \ \ \ x=(-1)^k*arcsin\frac{2}{3}+\pi*k 2cosx-3sinx*cosx=0\\cosx(2-3sinx)=0\\cosx=0\ \ \ \ \ \ \ \ \ \ \ 2-3sinx=0\\x=\frac{\pi}{2}+\pi*n \ \ \ \ sinx=\frac{2}{3}\\ x=\frac{\pi}{2}+\pi*n \ \ \ \ x=(-1)^k*arcsin\frac{2}{3}+\pi*k](https://tex.z-dn.net/?f=2cosx-3sinx%2Acosx%3D0%5C%5Ccosx%282-3sinx%29%3D0%5C%5Ccosx%3D0%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+2-3sinx%3D0%5C%5Cx%3D%5Cfrac%7B%5Cpi%7D%7B2%7D%2B%5Cpi%2An+%5C+%5C+%5C+%5C+sinx%3D%5Cfrac%7B2%7D%7B3%7D%5C%5C+x%3D%5Cfrac%7B%5Cpi%7D%7B2%7D%2B%5Cpi%2An+%5C+%5C+%5C+%5C+x%3D%28-1%29%5Ek%2Aarcsin%5Cfrac%7B2%7D%7B3%7D%2B%5Cpi%2Ak)
13) ![8sin^2x+sinx+2cos^2x=3\\8sin^2x+sinx+2-2sin^2x-3=0\\6sin^2+sinx-1=0\\sinx=t, -1\leq t\leq1\\6t^2+t-1=0\\t_1=-\frac{1}{2};t_2=\frac{1}{3}\\sinx=-\frac{1}{2}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ sinx=\frac{1}{3}\\x=(-1)^n^+^1*\frac{\pi}{6}+\pi*n\ \ \ \ \ \ \ x=(-1)^k*arcsin\frac{1}{3}+\pi*k 8sin^2x+sinx+2cos^2x=3\\8sin^2x+sinx+2-2sin^2x-3=0\\6sin^2+sinx-1=0\\sinx=t, -1\leq t\leq1\\6t^2+t-1=0\\t_1=-\frac{1}{2};t_2=\frac{1}{3}\\sinx=-\frac{1}{2}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ sinx=\frac{1}{3}\\x=(-1)^n^+^1*\frac{\pi}{6}+\pi*n\ \ \ \ \ \ \ x=(-1)^k*arcsin\frac{1}{3}+\pi*k](https://tex.z-dn.net/?f=8sin%5E2x%2Bsinx%2B2cos%5E2x%3D3%5C%5C8sin%5E2x%2Bsinx%2B2-2sin%5E2x-3%3D0%5C%5C6sin%5E2%2Bsinx-1%3D0%5C%5Csinx%3Dt%2C+-1%5Cleq+t%5Cleq1%5C%5C6t%5E2%2Bt-1%3D0%5C%5Ct_1%3D-%5Cfrac%7B1%7D%7B2%7D%3Bt_2%3D%5Cfrac%7B1%7D%7B3%7D%5C%5Csinx%3D-%5Cfrac%7B1%7D%7B2%7D%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+%5C+sinx%3D%5Cfrac%7B1%7D%7B3%7D%5C%5Cx%3D%28-1%29%5En%5E%2B%5E1%2A%5Cfrac%7B%5Cpi%7D%7B6%7D%2B%5Cpi%2An%5C+%5C+%5C+%5C+%5C+%5C+%5C+x%3D%28-1%29%5Ek%2Aarcsin%5Cfrac%7B1%7D%7B3%7D%2B%5Cpi%2Ak)
14) ![\frac{cos83*cos37-sin83*sin37}{sin25*cos35+cos25*sin35}=\frac{cos(83+37)}{sin(25+35)}=\frac{cos120}{sin60}=\frac{sin30}{sin60}=\frac{1}{\sqrt{3}} \frac{cos83*cos37-sin83*sin37}{sin25*cos35+cos25*sin35}=\frac{cos(83+37)}{sin(25+35)}=\frac{cos120}{sin60}=\frac{sin30}{sin60}=\frac{1}{\sqrt{3}}](https://tex.z-dn.net/?f=%5Cfrac%7Bcos83%2Acos37-sin83%2Asin37%7D%7Bsin25%2Acos35%2Bcos25%2Asin35%7D%3D%5Cfrac%7Bcos%2883%2B37%29%7D%7Bsin%2825%2B35%29%7D%3D%5Cfrac%7Bcos120%7D%7Bsin60%7D%3D%5Cfrac%7Bsin30%7D%7Bsin60%7D%3D%5Cfrac%7B1%7D%7B%5Csqrt%7B3%7D%7D)
15)![sin\alpha=\frac{3}{5};cos^2\alpha=1-\frac{9}{25}=\frac{16}{25} sin\alpha=\frac{3}{5};cos^2\alpha=1-\frac{9}{25}=\frac{16}{25}](https://tex.z-dn.net/?f=sin%5Calpha%3D%5Cfrac%7B3%7D%7B5%7D%3Bcos%5E2%5Calpha%3D1-%5Cfrac%7B9%7D%7B25%7D%3D%5Cfrac%7B16%7D%7B25%7D)
![cos\alpha=-\frac{4}{5} cos\alpha=-\frac{4}{5}](https://tex.z-dn.net/?f=cos%5Calpha%3D-%5Cfrac%7B4%7D%7B5%7D)